Stress analysis and fatigue life prediction of portable rocket motor test stand using finite element method
Keywords:
Stress analysis, life prediction, portable rocket motor, finite element methodAbstract
A portable rocket motor test stand serves as the apparatus to evaluate the performance of rocket motors under controlled conditions. This equipment is crucial for assessing the thrust of the RX 200 rocket motor and examining the capabilities of various components, including the tube, propellant, insulator, igniter, nozzle, and rocket cap itself. Before conducting the RX 200 rocket flight test, a preliminary assessment using this equipment is essential. Therefore, the design of a rocket motor test stand must be carefully calculated to ensure that the tool functions as desired. In this study, thrust force variations of 10,000, 12,000, 14,000, and 16,000 N were applied. The portable rocket motor test stand utilized Aluminium 6061-T6, known for its low density, corrosion resistance, and moderate strength. Finite element analysis was conducted using Ansys Workbench software. The results of the fatigue simulation reveal that the portable rocket motor test stand fails to achieve a service life of 1 million cycles at a thrust of 16,000 N.
References
[1] Summers, M. H. & Villarreal, J. K. Small - Scale Hybrid Rocket Test Stand and Characterization of Swirl Injectors. 1–13 (2013).
[2] Ortiz, L. et al. Development of a Mobile Rocket Engine Test Stand ( MRETS ). 1–17 (2018). doi:10.2514/6.2018-4600
[3] Jain, U., Shukla, H., Kapoor, S., Pandey, A. & Nirwal, H. Design and analysis of 2-axis rocket motor stand for thrust vectoring. in AIAA Propulsion and Energy 2020 Forum 1–9 (2020). doi:10.2514/6.2020-3920
[4] Prochnicki, P., Fessl, J., Moruzzi, M., Perry, E. & Targonski, J. Hydra : Development of a Liquid Rocket Engine Test Stand and Feed System. 1–20 (2018). doi:10.2514/6.2018-4601
[5] Schultz, L. et al. Design of Torsional Test Stand for Micro-Newton Force Detection. 1–14 (2018). doi:10.2514/6.2018-3737
[6] Moruzzi, M. & Fessl, J. Liquid rocket engine component water-flow test stand. in 2018 Joint Propulsion Conference 1–18 (2018). doi:10.2514/6.2018-4599
[7] Wibawa, L. A. N. Static Stress Analysis and Fatigue Life Prediction of Rocket Motor Test Stand Using Numerical Simulation. R.E.M. (Rekayasa Energi Manufaktur) J. 6, 9–13 (2021).
[8] Mickels, C. et al. Project atlas: A mobile universal rocket engine test stand. in AIAA Scitech 2019 Forum 1–8 (2019). doi:10.2514/6.2019-1938
[9] Thomas, J. C. et al. Design and Characterization of a Lab-Scale Hybrid Rocket Test Stand. in 52nd AIAA/SAE/ASEE Joint Propulsion Conference 1–13 (2016). doi:10.2514/6.2016-4965
[10] Brimhall, Z. N., Divitotawela, N., Atkinson, J. P., Kirk, D. R. & Peebles, H. G. Design and validation of a six degree of freedom rocket motor test stand. in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2008). doi:10.2514/6.2008-5051
[11] Brimhall, Z. N. et al. Design of a Novel Six Degree of Freedom Solid Rocket Motor Test Stand. in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 1–7 (2007).
[12] Hansen, J. J. et al. Student design of a bipropellant liquid rocket engine and associated infrastructure. AIAA Propuls. Energy 2020 Forum 1–36 (2020). doi:10.2514/6.2020-3918
[13] Figueroa, F. & Schmalzel, J. Integrated System Health Management : Pilot Operational Implementation in a Rocket Engine Test Stand. AIAA Infotech@ Aerosp. 2010 1–14 (2010).
[14] Rezende, R. N. et al. Designing a thrust vector test stand for the TurboRocket. AIAA Propuls. Energy Forum, 2021 (2021). doi:10.2514/6.2021-3350
[15] Shukla, H., Jain, U. & Kumar, D. Preliminary Design Approach for Sub-Scale Rocket Motor Thrust Stand. in Recent Advances in Mechanical Engineering (eds. Narendranth, S., Mukunda, P. G. & Saha, U. K.) 1–17 (Springer Nature Singapore, 2023).
[16] Bouziane, M., Bertoldi, A. E. M., Milova, P., Hendrick, P. & Lefebvre, M. Development and testing of a lab-scale test-bench for hybrid rocket motors. 15th Int. Conf. Sp. Oper. 2018 (2018). doi:10.2514/6.2018-2722
[17] Wibawa, L. A. N., Diharjo, K., Raharjo, W. W. & Jihad, B. H. Stress Analysis of Thick-Walled Cylinder for Rocket Motor Case under Internal Pressure. J. Adv. Res. Fluid Mech. Therm. Sci. 70, 106–115 (2020).
[18] Wibawa, L. A. N., Diharjo, K., Raharjo, W. & Jihad, B. H. The Effect of Fillet Radius and Length of The Thick-Walled Cylinder on Von Mises Stress and Safety Factor for Rocket Motor Case. AIP Conf. Proc. 2296, (2020).
[19] Wibawa, L. A. N. & Tuswan. Lightweight optimization design of thin-walled cylindrical rocket motor tube using FEA. AIP Conf. Proc. 2590, (2023).
[20] Wibawa, L. A. N. & Setiadi. The effect of load variations and thread types on the joint strength of the rocket cap and tube using finite element method. AIP Conf. Proc. 2590, (2023).
[21] Wibawa, L. A. N. & Tuswan. Effect of cylinder length on the ratio of safety factor and weight of rocket motor tube using thin-walled cylinder. AIP Conf. Proc. 2590, (2023).
[22] Dobrovolsky, V. & Zablonsky, K. Machine elements : a textbook. (Peace Publisher, 1978).
[23] Wibawa, L. A. N. Effect of Fillet Radius of UAV Main Landing Gear on Static Stress and Fatigue Life using Finite Element Method. J. Phys. Conf. Ser. 1811, (2021).
[24] Wibawa, L. A. N. Effect of Bolt Hole Size on Static Stress and Fatigue Life of UAV Main Landing Gear Using Numerical Simulation. J. Phys. Conf. Ser. 1811, (2021).
Downloads
Published
Conference Proceedings Volume
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.