Risk analysis of mining construction activities on hydrogeological vulnerability in Dompu District, East Sumbawa, West Nusa Tenggara

Risk analysis of mining construction activities on hydrogeological vulnerability in Dompu District, East Sumbawa, West Nusa Tenggara

Authors

  • Udi Susilo Pancasila University, Jakarta, Indonesia
  • Atie Tri Juniati Pancasila University, Jakarta, Indonesia
  • I Nyoman Teguh Prasidha Pancasila University, Jakarta, Indonesia

Keywords:

Risk, Mining construction, Aquifer, Blasting

Abstract

Indonesia is rich in natural resources due to its location at the meeting point of the Indo-Australian, Pacific, and Eurasian plates. Areas like East Sumbawa are prone to soil shifts from volcanic activity and mining. The fragile soil and mining increase the risk of soil structure changes and groundwater disruption. This research aims to examine the effects and risks of mining construction in fragile limestone regions on soil structure alterations and shifts in groundwater basin or aquifer positions. The map overlay method will visually detect landscape changes from mining, while the HVSR method will analyze subsurface phenomena like landslides. Archie’s theory will aid groundwater basin layer analysis. Archie’s theory and geoelectrical methods can identify groundwater basins for early detection and final verification of research. Blasting modeling software simulates ground vibration effects and their impact on soil structure and groundwater basins. Changes in soil structure and associated risks can be detected early. Overlaying existing maps with simulation software results provides early hazard detection information. This can be utilized to design community development activities, avoiding potential risks from construction and mining activities on fragile limestone lands.

References

[1] D. Hasterok et al., “New Maps of Global Geological Provinces and Tectonic Plates,” Aug. 01, 2022, Elsevier B.V. doi: 10.1016/j.earscirev.2022.104069.

[2] E. Rutherford, K. Burke, and J. Lytwyn, “Tectonic history of Sumba Island, Indonesia, since the Late Cretaceous and its rapid escape into the forearc in the Miocene,” J Asian Earth Sci, vol. 19, no. 4, pp. 453–479, Jun. 2001, doi: 10.1016/S1367-9120(00)00032-8.

[3] R. Hall and W. Spakman, “Subducted slabs beneath the eastern Indonesia–Tonga region: insights from tomography,” Earth Planet Sci Lett, vol. 201, no. 2, pp. 321–336, Jul. 2002, doi: 10.1016/S0012-821X(02)00705-7.

[4] J. A. Katili, “Volcanism and plate tectonics in the Indonesian island arcs,” Tectonophysics, vol. 26, no. 3–4, pp. 165–188, Apr. 1975, doi: 10.1016/0040-1951(75)90088-8.

[5] Uno Irianto, “Potensi Bahan Galian dan Mitigasi Bencana Alam,” SMARTek, vol. 8, 2010.

[6] P. Pelzl and S. Poelhekke, “Good mine, bad mine: Natural resource heterogeneity and Dutch disease in Indonesia ☆,” J Int Econ, vol. 131, 2021, doi: 10.34894/ZXNEQ7.

[7] M. N. Ayiwouo, S. Sriram, F. Y. Ngounouno, K. Rajagopal, and I. Ngounouno, “Assessment of the environmental impacts of gold mining activities at Gankombol (Adamawa-Cameroon) using Leopold matrix, Fecteau grid and remote sensing approach,” Journal of African Earth Sciences, vol. 207, Nov. 2023, doi: 10.1016/j.jafrearsci.2023.105050.

[8] Pemerintah RI, “UU Nomor 4 Tahun 2009,” LN. 2009/ No. 4 , TLN NO. 4959, LL SETNEG : 59 HLM, vol. 4, 2009, Accessed: Dec. 15, 2023. [Online]. Available: https://peraturan.bpk.go.id/Details/38578/uu-no-4-tahun-2009

[9] R. Warner, “International environmental law principles relevant to exploitation activity in the Area,” Mar Policy, vol. 114, Apr. 2020, doi: 10.1016/j.marpol.2019.04.007.

[10] Y. Liu, W. Zhou, K. Yan, Y. Guan, and J. Wang, “Identification of the disturbed range of coal mining activities: A new land surface phenology perspective,” Ecol Indic, vol. 143, Oct. 2022, doi: 10.1016/j.ecolind.2022.109375.

[11] O. Florez-Vargas et al., “Geological context and human exposures to element mixtures in mining and agricultural settings in Colombia,” Science of the Total Environment, vol. 898, Nov. 2023, doi: 10.1016/j.scitotenv.2023.165632.

[12] Lady Ayu, S. Us, and A. Octova, “Permetaan Zonasi Indeks Kerentanan Seismik pada Daerah Tambang CV. Bara Mitra Kencana, Kecamatan Talawi, Sawahlunto,” Jurnal Bina Tambang, vol. 6, no. 5, 2021.

[13] C. Ansori, P. Dwi Raharjo, and dan Fitriany Amalia Wardhani Balai Informasi dan Konservasi Kebumian Karangsambung, “Potensi Pertambangan Dan Ancaman Kebencanaan Sebagai Data Penunjang Penyusunan Tata Ruang Wilayah Di Kecamatan Wadaslintang, Kabupaten Wonosobo, Provinsi Jawa Tengah Mining And Hazard Potential As Supporting Data For Territorial Arrangement At Wadaslintang District, Wonosobo Regency, Province Of Central Java,” 2017.

[14] Setneg RI, “Peraturan Presiden No. 28 Tahun 2011 tentang Penggunaan Kawasan Hutan Lindung Untuk Penambangan Bawah Tanah,” 2011.

[15] Kemen ESDM, “Permen ESDM Nomor 26 Tahun 2018_tentang Pelaksanaan Kaidah Pertambangan Yang Baik Dan Pengawasan Pertambangan Mineral Dan Batubara.pdf,” 2018. [Online]. Available: www.peraturan.go.id

[16] N. Setda, “Pergub Nusa Tenggara Barat No. 34 Tahun 2019 tentang Pedoman Pengendalian Usaha Pertambangan Mineral Bukan Logam dan Batuan di Provinsi Nusa Tenggara Barat,” 2019.

[17] ESDM, “Peta Geologi,” https://geologi.esdm.go.id/geomap/pages/province/52.

[18] Indonesia Geospasial, “Peta Topografi NTB,” https://www.indonesia-geospasial.com/2020/01/shp-rbi-provinsi-nusa-tenggara-barat.html.

[19] M. Dahlan Th Musa, “Identifikasi Sebaran Aquifer Menggunakan Metode Geolistrik Hambatan Jenis Di Wilayah Kecamatan Moutong Kabupaten Parigi Moutong,” vol. 15, no. 1, 2017.

[20] D. Rolansyah and E. Sumarjono, “Analisis Getaran Tanah (Ground Vibration) Terhadap Area Pemukiman Pada Operasi Peledakan Tambang Batubara Pit 2 Banko Barat,” 2021.

[21] S. Deanti Amatilah and D. Marmer, “Analisis Ground Vibration Akibat Kegiatan Peledakan Terhadap Struktur Bangunan di PT Dahana (Persero) Job Site PT HPU,” 2016.

[22] R. Xu and L. Wang, “The horizontal-to-vertical spectral ratio and its applications,” EURASIP J Adv Signal Process, vol. 2021, no. 1, Dec. 2021, doi: 10.1186/s13634-021-00765-z.

[23] H. Niu, J. Wang, Z. Jing, and B. Liu, “Identification and management of land use conflicts in mining cities: A case study of Shuozhou in China,” Resources Policy, vol. 81, Mar. 2023, doi: 10.1016/j.resourpol.2023.103301.

[24] Doli Ali Fitri, “Pemetaan Zonasi Indeks Kerentanan Seismik Pada Daerah Pasca Tambang Di PT. Bukit Asam (Persero) Tbk. Unit Penambangan Ombilin, Sawahlunto,” 2018.

[25] Z. A. Harahap et al., “Perencanaan Reklamasi Pada Pit B2 Bukit 7b Pt. Antam (Persero) Tbk Unit Bisnis Pertambangan Bauksit Kalimantan Barat Biro Tayan Kabupaten Sanggau,” 2020.

[26] D. Bucciarelli and H. Nath Gharti Alexander Braun, “Estimating Fundamental Site Frequency and Soil Thickness using the Horizontal to Vertical Spectral Ratio Method on Wolfe Island, Ontario,” 2022.

[27] C. Brücker and A. Preuße, “The future of underground spatial planning and the resulting potential risks from the point of view of mining subsidence engineering,” Int J Min Sci Technol, vol. 30, no. 1, pp. 93–98, Jan. 2020, doi: 10.1016/j.ijmst.2019.12.013.

[28] A. P. Rudke, V. A. Sikora de Souza, A. M. dos Santos, A. C. Freitas Xavier, O. C. Rotunno Filho, and J. A. Martins, “Impact of mining activities on areas of environmental protection in the southwest of the Amazon: A GIS- and remote sensing-based assessment,” J Environ Manage, vol. 263, Jun. 2020, doi: 10.1016/j.jenvman.2020.110392.

[29] N. R. Viney, D. A. Post, R. S. Crosbie, and L. J. M. Peeters, “Modelling the impacts of future coal mining and coal seam gas extraction on river flows: A methodological framework,” J Hydrol (Amst), vol. 596, May 2021, doi: 10.1016/j.jhydrol.2021.126144.

[30] T. T. Werner, A. Bebbington, and G. Gregory, “Assessing impacts of mining: Recent contributions from GIS and remote sensing,” Jul. 01, 2019, Elsevier Ltd. doi: 10.1016/j.exis.2019.06.011.

[31] A. P. Durán, J. Rauch, and K. J. Gaston, “Global spatial coincidence between protected areas and metal mining activities,” Biol Conserv, vol. 160, pp. 272–278, Apr. 2013, doi: 10.1016/j.biocon.2013.02.003.

[32] H. Kujala, A. L. Whitehead, W. K. Morris, and B. A. Wintle, “Towards strategic offsetting of biodiversity loss using spatial prioritization concepts and tools: A case study on mining impacts in Australia,” Biol Conserv, vol. 192, pp. 513–521, Dec. 2015, doi: 10.1016/j.biocon.2015.08.017.

[33] M. Guilhon, P. Singh, S. Christiansen, and A. Turra, “Revisiting procedural requirements for the assessment of environmental impacts arising from the different stages of deep seabed mining: Current practices at the International Seabed Authority and recommendations for improvement,” Environ Impact Assess Rev, vol. 96, Sep. 2022, doi: 10.1016/j.eiar.2022.106846.

[34] T. He, J. Guo, W. Xiao, S. Xu, and H. Chen, “A novel method for identification of disturbance from surface coal mining using all available Landsat data in the GEE platform,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 205, pp. 17–33, Nov. 2023, doi: 10.1016/j.isprsjprs.2023.09.026.

[35] R. Boldy, T. Santini, M. Annandale, P. D. Erskine, and L. J. Sonter, “Understanding the impacts of mining on ecosystem services through a systematic review,” Mar. 01, 2021, Elsevier Ltd. doi: 10.1016/j.exis.2020.12.005.

[36] M. Chang, X. Dou, L. Tang, and H. Xu, “Risk assessment of multi-disaster in Mining Area of Guizhou, China,” International Journal of Disaster Risk Reduction, vol. 78, Aug. 2022, doi: 10.1016/j.ijdrr.2022.103128.

Downloads

Published

2025-05-31

How to Cite

Risk analysis of mining construction activities on hydrogeological vulnerability in Dompu District, East Sumbawa, West Nusa Tenggara. (2025). BIS Energy and Engineering, 2, V225029. https://doi.org/10.31603/biseeng.217

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.