The potential of imperata cylindrica for phytomining and soil remediation of red mud waste

The potential of imperata cylindrica for phytomining and soil remediation of red mud waste

Authors

  • Gilang Lukman Hakim Universitas Gadjah Mada, 55284, Yogyakarta, Indonesia
  • Agus Prasetya Universitas Gadjah Mada, 55284, Yogyakarta, Indonesia
  • Panut Mulyono Universitas Gadjah Mada, 55284, Yogyakarta, Indonesia
  • Himawan Tri Bayu Murti Petrus Universitas Gadjah Mada, 55284, Yogyakarta, Indonesia

Keywords:

Aluminum, Land restoration, Phytomining, Rare earth elements, Red mud

Abstract

As industrialization accelerates, the demand for metals, particularly aluminium, continues to rise. This growth has also led to an increase in by-products from the bauxite ore refining process, namely red mud. The highly alkaline nature of red mud, combined with its heavy metal content, poses significant environmental challenges. However, red mud also contains rare earth elements (REEs) that can serve as valuable secondary resources. An environmentally friendly approach to recovering these metals is phytomining, which utilizes plants and simultaneously contributes to land remediation. This study aims to evaluate the potential of Imperata cylindrica in metal recovery and the remediation of red mud waste. The research began by conditioning the pH of red mud through the addition of citric acid, fertilizers, and by adjusting the red mud composition to levels of 40% based on the optimum result using Response Surface Methodology. Phytomining was initiated once the pH of the substrate (a mixture of red mud and soil) reached an optimal range of 8.0–8.5. The results demonstrated that Imperata cylindrica was capable of absorbing several rare earth metals, including gadolinium (Gd), neodymium (Nd), and cerium (Ce), with concentrations of 119.5 mg/kg, 16.5 mg/kg, and 6.67 mg/kg, respectively, in its roots. Additionally, the plant showed the ability to absorb major components such as iron (Fe) and titanium (Ti), with the metals distributed throughout the plant's roots, stems, and leaves.

References

[1] S. Yin, Y. Shao, A. Wu, H. Wang, X. Liu, and Y. Wang, ‘A systematic review of paste technology in metal mines for cleaner production in China’, J Clean Prod, vol. 247, p. 119590, Feb. 2020, doi: 10.1016/j.jclepro.2019.119590.

[2] D. K. Nordstrom, D. W. Blowes, and C. J. Ptacek, ‘Hydrogeochemistry and microbiology of mine drainage: An update’, Applied Geochemistry, vol. 57, pp. 3–16, Jun. 2015, doi: 10.1016/j.apgeochem.2015.02.008.

[3] A. Yulikasari et al., ‘A comprehensive review of integrated phytoremediation and nanoparticle methods for heavy metal in red mud’, Ecotoxicol Environ Saf, vol. 288, p. 117381, Dec. 2024, doi: 10.1016/j.ecoenv.2024.117381.

[4] X. Liu, Y. Han, F. He, P. Gao, and S. Yuan, ‘Characteristic, hazard and iron recovery technology of red mud - A critical review’, J Hazard Mater, vol. 420, p. 126542, Oct. 2021, doi: 10.1016/j.jhazmat.2021.126542.

[5] Y. Liu, C. Lin, and Y. Wu, ‘Characterization of red mud derived from a combined Bayer Process and bauxite calcination method’, J Hazard Mater, vol. 146, no. 1–2, pp. 255–261, Jul. 2007, doi: 10.1016/j.jhazmat.2006.12.015.

[6] H. Tanvar and B. Mishra, ‘Hydrometallurgical Recycling of Red Mud to Produce Materials for Industrial Applications: Alkali Separation, Iron Leaching and Extraction’, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 52, no. 5, pp. 3543–3557, Oct. 2021, doi: 10.1007/s11663-021-02285-5.

[7] W. Li, Z. Li, N. Wang, and H. Gu, ‘Selective extraction of rare earth elements from red mud using oxalic and sulfuric acids’, J Environ Chem Eng, vol. 10, no. 6, Dec. 2022, doi: 10.1016/j.jece.2022.108650.

[8] Y. Hua, K. V. Heal, and W. Hanl, ‘The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review’, J Hazard Mater, vol. 325, pp. 17–30, 2017, doi: 10.1016/j.jhazmat.2016.11.073.

[9] S. Ruyters, J. Mertens, E. Vassilieva, B. Dehandschutter, A. Poffijn, and E. Smolders, ‘The Red Mud Accident in Ajka (Hungary): Plant Toxicity and Trace Metal Bioavailability in Red Mud Contaminated Soil’, Environ Sci Technol, vol. 45, no. 4, pp. 1616–1622, Feb. 2011, doi: 10.1021/es104000m.

[10] K. Yoon, D.-W. Cho, Y. F. Tsang, D. C. W. Tsang, E. E. Kwon, and H. Song, ‘Synthesis of functionalised biochar using red mud, lignin, and carbon dioxide as raw materials’, Chemical Engineering Journal, vol. 361, pp. 1597–1604, Apr. 2019, doi: 10.1016/j.cej.2018.11.012.

[11] C. Klauber, M. Gräfe, and G. Power, ‘Bauxite residue issues: II. options for residue utilization’, Hydrometallurgy, vol. 108, no. 1–2, pp. 11–32, Jun. 2011, doi: 10.1016/j.hydromet.2011.02.007.

[12] T. Jiang, S. Singh, K. A. Dunn, and Y. Liang, ‘Optimizing Leaching of Rare Earth Elements from Red Mud and Spent Fluorescent Lamp Phosphors Using Levulinic Acid’, Sustainability (Switzerland), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14159682.

[13] A. Akcil, N. Akhmadiyeva, R. Abdulvaliyev, Abhilash, and P. Meshram, ‘Overview On Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium’, Mineral Processing and Extractive Metallurgy Review, vol. 39, no. 3, pp. 145–151, May 2018, doi: 10.1080/08827508.2017.1288116.

[14] X. kai Zhang, K. gen Zhou, W. Chen, Q. yuan Lei, Y. Huang, and C. hong Peng, ‘Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach’, J Cent South Univ, vol. 26, no. 2, pp. 458–466, Feb. 2019, doi: 10.1007/s11771-019-4018-6.

[15] A. Tognacchini, T. Rosenkranz, A. van der Ent, G. E. Machinet, G. Echevarria, and M. Puschenreiter, ‘Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges’, J Environ Manage, vol. 254, Jan. 2020, doi: 10.1016/j.jenvman.2019.109798.

[16] P. U. Okoroafor, N. Kunisch, M. N. Epede, C. O. Ogunkunle, H. Heilmeier, and O. Wiche, ‘Phytoextraction of rare earth elements, germanium and other trace elements as affected by fertilization and liming’, Environ Technol Innov, vol. 28, p. 102607, Nov. 2022, doi: 10.1016/j.eti.2022.102607.

[17] H. L. Medina-Díaz, F. J. López-Bellido, J. Alonso-Azcárate, F. J. Fernández-Morales, and L. Rodríguez, ‘Can rare earth elements be recovered from abandoned mine tailings by means of electrokinetic-assisted phytoextraction?’, Environmental Science and Pollution Research, vol. 31, no. 18, pp. 26747–26759, Mar. 2024, doi: 10.1007/s11356-024-32759-3.

[18] X. Cao et al., ‘Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system’, Science of The Total Environment, vol. 723, p. 138152, Jun. 2020, doi: 10.1016/j.scitotenv.2020.138152.

[19] S. M. Mousavi Kouhi and M. Moudi, ‘Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline–sodic soil’, Environmental Science and Pollution Research, vol. 27, no. 9, pp. 10027–10038, Mar. 2020, doi: 10.1007/s11356-019-07578-6.

[20] R. Bali, R. Siegele, and A. T. Harris, ‘Phytoextraction of Au: Uptake, accumulation and cellular distribution in Medicago sativa and Brassica juncea’, Chemical Engineering Journal, vol. 156, no. 2, pp. 286–297, Jan. 2010, doi: 10.1016/j.cej.2009.10.019.

[21] B. Jally et al., ‘A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis from China’, Miner Eng, vol. 166, Jun. 2021, doi: 10.1016/j.mineng.2021.106879.

[22] G. L. Hakim, A. P. envirotek, P. M. envirotek, and H. T. B. M. P. envirotek, ‘Studi Optimasi Komposisi Red Mud dan Asam Sitrat untuk Phytomining’, JURNAL ENVIROTEK, vol. 16, no. 2, Jan. 2025, doi: 10.33005/envirotek.v16i2.1921.

[23] W. Wang, M. X. Xia, J. Chen, R. Yuan, F. N. Deng, and F. F. Shen, ‘Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress’, Biochemistry (Moscow), vol. 81, no. 5, pp. 465–480, 2016, doi: 10.1134/S0006297916050047.

[24] S. Tiwari and N. K. Dubey, Adaptation strategies of plants against heavy metal stress. 2017. doi: 10.4324/9781315161549.

[25] M. T. Nakanishi et al., ‘The Crotalaria juncea metal transporter CjNRAMP1 has a high Fe uptake activity, even in an environment with high Cd contamination’, Int J Phytoremediation, vol. 20, no. 14, pp. 1427–1437, 2018, doi: 10.1080/15226514.2018.1501333.

[26] S. Juneja and S. Prakash, ‘The chemical form of trivalent chromium in xylem sap of maize (Zea mays L.)’, Chemical Speciation and Bioavailability, vol. 17, no. 4, pp. 161–169, 2005, doi: 10.3184/095422906783438820.

[27] W. Zhang, C. WAang, R. Xue, and L. Wang, ‘Effects of salinity on the soil microbial community and soil fertility’, J Integr Agric, vol. 18, no. 6, pp. 1360–1368, Jun. 2019, doi: 10.1016/S2095-3119(18)62077-5.

Downloads

Published

2025-05-26

How to Cite

The potential of imperata cylindrica for phytomining and soil remediation of red mud waste. (2025). BIS Health and Environmental Science, 2, V225007. https://doi.org/10.31603/bishes.244

Similar Articles

You may also start an advanced similarity search for this article.