The influence of cementation solution on the permeability of waste sludge stabilized with bacteria as a temporary landfill cover
Keywords:
Leachate, Landfill cover, Sludge wasteAbstract
Piles of rubbish can produce liquid waste called leachate. Leachate from landfills can have negative impacts on the environment and humans. To minimize the impact of leachate on the surrounding environment, the waste is covered with a material that can isolate it from the surrounding environment. Previous research has reported that waste sludge as a by-product of water system processing can be used as a temporary landfill cover after being compacted and reinforced using the MICP method to reduce water flow. Therefore, this research was carried out with the aim of determining the effect of the molarity of the cementation solution on the deposition process of calcite which is concentrated in the soil pores, thereby reducing the permeability coefficient value of the Temporary Landfill Cover. In this study, sludge waste was processed by adding 6% Bacillus Subtilis bacterial culture for 6 days with variations in the molarity of the cementation solution (CS), namely 0.25 M, 0.5 M and 0.75 M. The results showed that the cementation solution was 0.25 M gave the best results in the deposition of calcite that marked with a smaller permeability value compared to the 0.5 M and 0.75 M solutions after curing period for 28 days.
References
[1] S. H. Nur, “Studi Hydraulic Conductivity Clay Liner Dengan Variasi Tingkat Kepadatan Tertentu Terinfiltrasi Air Lindi,” Jurnal Keteknikan dan Sains (JUTEKS)-LPPM UNHAS, vol. 1, no. 1, 2018.
[2] A. Mojiri et al., “Treatment of landfill leachate with different techniques: An overview,” Journal of Water Reuse and Desalination, vol. 11, no. 1, pp. 66–96, 2021, doi: 10.2166/wrd.2020.079.
[3] Fadlul Laili, “Analisa Kualitas Air Lindi Dan Potensi Penyebarannya Ke Lingkungan Sekitar Tpa Gunung Tugel Kabupaten Banyumas,” 2021, Accessed: Aug. 29, 2023. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/29672
[4] R. P. Mallawa, S. G. Rondonuwu, and A. N. Sarajar, “Analisis Self Healing Capacity (SHC) Pada Geosynthetic Clay Liners (GCL) Dengan Lempung Lunak Sebagai Material Pengisi Melalui Uji Direct Shear,” 2022, [Online]. Available: https://ejournal.unsrat.ac.id/
[5] T. Sun et al., “Impact of Solidified Municipal Sludge as Temporary Covering Soil on the Stability of Landfill Slope,” Applied Sciences (Switzerland), vol. 13, no. 5, Mar. 2023, doi: 10.3390/app13052786.
[6] N. A. Rosli, H. Abdul Aziz, A. B. H. Kueh, L. L. P. Lim, and M. H. Zawawi, “Leaching Behaviour of Synthetic Leachate through a Sewage Sludge and Red Gypsum Composite as Intermediate Landfill Cover,” Sustainability (Switzerland), vol. 15, no. 5, Mar. 2023, doi: 10.3390/su15054229.
[7] Raffaello Cossu and Rainer Stegmann, Solid Waste Landfilling: Concepts, Processes, Technology. Hamburg: Elsevier Science Publishing Co Inc, 2018.
[8] X. H. Fan, H. Q. Xu, G. L. Jin, Y. Y. Lv, S. L. Wu, and T. Wu, “Regional differences in influence of intermediate cover permeability on perched leachate in landfill,” Urban Clim, vol. 42, 2022, doi: https://doi.org/10.1016/j.uclim.2022.101094.
[9] S. E. Sucahyo, A. Firdaus, L. Prodi, T. Lingkungan, A. T. Tirta, and W. Magelang, “Pengelolaan dan Pemanfaatan Limbah Lumpur PDAM Cilacap,” 2018, [Online]. Available: https://journals.unihaz.ac.id/index.php/georafflesia
[10] Artur Spat Ruviaro, Laura Silvestro, Taylana Piccinini Scolaro, Paulo Ricardo de Matos, and Fernando Pelisser, “Use of calcined water treatment plant sludge for sustainable cementitious composites production,” J Clean Prod, vol. 327, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.129484.
[11] F. Syarif, G. Mahadika Davino, and M. Ferry Ardianto, “Penerapan Teknik Biocementation Oleh Bacillus Subtilis dan Pengaruhnya Terhadap Permeabilitas Pada Tanah Organik Applicability of Biocementation Technique by Bacilus Subtilis and Its Effect of Permeability in Organic Soil,” Jurnal Saintis, vol. 20, no. 1, 2020, doi: 10.25299/saintis2020.vol20(01).4809.
[12] A. M. Indriani and G. Utomo, “Pengaruh Microbially Induced Calcite Precipitation (MICP) terhadap Perilaku Kuat Geser Tanah Terkontaminasi Batubara,” CIVED, vol. 10, no. 1, p. 53, Mar. 2023, doi: 10.24036/cived.v10i1.122318.
[13] A. M. Indriani, G. Utomo, and M. N. Fadhillah, “Pengaruh Semen Pada Tanah Lempung Plastisitas Rendah Terhadap Nilai CBR Effect Of Cement On Low Plasticity Clay Soil On CBR Values,” Balikpapan, 2021. Accessed: Aug. 29, 2023. [Online]. Available: http://repository.unhas.ac.id:443/id/eprint/6274
[14] A. M. Indriani, G. Utomo, and H. Ryka, “The Effect Of Microbially Induced Calcite Precipitation (MICP) On Shear Strength Of Coal Contaminated Soil,” ICASGI, vol. 1, no. 1, 2022, doi: https://doi.org/10.36277/icasgi.v1i1.6.
[15] Z. S. Hadi and K. A. Saeed, “Effect of microbial-induced calcite precipitation (MICP) on the strength of soil contaminated with lead nitrate,” J Mech Behav Mater, vol. 31, no. 1, pp. 143–149, Jan. 2022, doi: 10.1515/jmbm-2022-0016.
[16] A. Miftah, H. Khodadadi Tirkolaei, and H. Bilsel, “Bio-precipitation of CaCO3 for soil improvement: A Review,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, May 2020. doi: 10.1088/1757-899X/800/1/012037.
[17] S. Tesiana, A. Marini Indriani, and G. Utomo, “Pemanfaatan Limbah Lumpur yang Distabilisasi Menggunakan MICP sebagai Lapisan Penutup Sementara Tempat Pembuangan Akhir,” Jurnal Komposit: Jurnal Ilmu-ilmu Teknik Sipil, vol. 8, no. 1, pp. 171–178, 2024, doi: 10.32832/komposit.v8i1.15025.
[18] P. T. Natasya, A. Marini Indriani, and G. Utomo, “Construction of Temporary Landfill Shield by Utilizing MICP Stabilized Water Treatment Plant Sludge Waste,” 2023. [Online]. Available: http://cived.ppj.unp.ac.id/index.php/CIVED
[19] A. Al Qabany and K. Soga, “Effect of chemical treatment used in MICP on engineering properties of cemented soils,” Geotechnique, vol. 63, no. 4, pp. 331–339, Mar. 2013, doi: 10.1680/geot.SIP13.P.022.
[20] A. Al Qabany, K. Soga, and C. Santamarina, “Factors Affecting Efficiency of Microbially Induced Calcite Precipitation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 138, no. 8, pp. 992–1001, Aug. 2012, doi: 10.1061/(asce)gt.1943-5606.0000666.
[21] A. Rahmadi, A. M. Indriani, and G. Utomo, “JURMATEKS : Jurnal Manajemen Teknologi dan Teknik Sipil Volume 6 Nomor 2 Tahun 2023 Permeabilitas Tanah Lanau Sebagai Temporary Landfill Cover yang Distabilisasi dengan Bakteri dan Larutan Sementasi”, doi: 10.30737/jurmateks.v6i2.4998.
[22] A. Marini Indriani, G. Utomo, and N. Fitriyani, “PENGARUH KULTUR BAKTERI PADA PROSES BIOSEMENTASI TANAH LATERIT TERHADAP NILAI CBR,” Media Ilmiah Teknik Sipil, vol. 11, no. 1, pp. 143–149, 2023, doi: https://doi.org/10.33084/mits.v11i2.4590.
[23] Rajiv T, “Stabilization of Clay Soil by MICP using Ureolytic / Non-Ureolytic Bacteria,” 2021. [Online]. Available: www.ijert.org
[24] Eko Indah Susanti and Bekti Prihatiningsih, “Perubahan Karakteristik Clay Liner Yang Distabilisasi Dengan Kapur Di Tpa Supit Urang Pada Konstruksi Sanitary Landfill Akibat Rembesan Leachate,” SNST, vol. 1, no. 1, 2018, doi: DOI: http://dx.doi.org/10.36499/psnst.v1i1.2252.
[25] A. A. Ayalew and I. Demir, “Physiochemical Characterization of Ethiopian Mined Kaolin Clay through Beneficiation Process,” Advances in Materials Science and Engineering, vol. 2023, 2023, doi: 10.1155/2023/9104807.
[26] A. Marini Indriani, G. Utomo, and R. Syahputra, “Pengaruh Siklus Basah Kering terhadap Perilaku Mekanik Tanah Lempung Stabilisasi Biosementasi dengan Bakteri Bacillus Subtilis,” CIVED, vol. 10, no. 2, pp. 2622–6774, 2023, doi: 10.24036/cived.v10i2.123404.
[27] A. M. Indriani, T. Harianto, A. R. Djamaluddin, and A. Arsyad, “Bioremediation Of Coal Contaminated Soil As The Road Foundations Layer,” International Journal of GEOMATE, vol. 21, no. 84, pp. 76–84, Aug. 2021, doi: 10.21660/2021.84.j2124.
[28] Y. Chen, Y. Han, X. Zhang, S. Sarajpoor, S. Zhang, and X. Yao, “Experimental Study on Permeability and Strength Characteristics of MICP-Treated Calcareous Sand,” Biogeotechnics, p. 100034, Aug. 2023, doi: 10.1016/j.bgtech.2023.100034.
[29] D. Mujah, L. Cheng, and M. A. Shahin, “Microstructural and Geomechanical Study on Biocemented Sand for Optimization of MICP Process,” Journal of Materials in Civil Engineering, vol. 31, no. 4, Apr. 2019, doi: 10.1061/(asce)mt.1943-5533.0002660.
Downloads
Published
Conference Proceedings Volume
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.