Design and manufacturing of control circuits for centrifuge device motors

Design and manufacturing of control circuits for centrifuge device motors

Authors

  • F Ardiyanto Department of Electrical Engineering, Sekolah Tinggi Teknologi Warga Surakarta, Surakarta, Indonesia
  • W Wiyono Department of Electrical Engineering, Sekolah Tinggi Teknologi Warga Surakarta, Surakarta, Indonesia
  • R Rahmat Department of Electrical Engineering, Sekolah Tinggi Teknologi Warga Surakarta, Surakarta, Indonesia
  • E B Raharjo Department of Electrical Engineering, Sekolah Tinggi Teknologi Warga Surakarta, Surakarta, Indonesia

Keywords:

Centrifuge device motors, Control circuit, DC motor

Abstract

A centrifuge is a tool that functions to separate organelles based on their density. The working principle of a centrifuge uses the principle of rotation or rotation of the tube containing the solution so that it can be separated based on its density. To mix the blood and reagents in the test tube which is placed in the disk hole, rotation is carried out on the disk hole of the test tube using a DC motor. The rotation of the DC motor greatly influences the process of mixing blood and reagents to achieve even mixing results in the blood ready for testing. Regulating motor speed is very important in centrifuge devices. This research designs and makes a control device to regulate the desired speed of a DC motor to move the disk hole of a test tube containing blood to produce evenly mixed blood and reagents. This DC motor control circuit uses a microcontroller circuit that produces control signals to regulate speed to produce optimal DC motor speed. From the results of DC motor load testing with a disk hole filled with 12 test tubes using the PID algorithm by changing the Kp, Ki and Kd parameters for DC motor speed at speeds of 1000 rpm, 2000 rpm, 3000 rpm and 4000 rpm. The best PID parameter setting values with Kp=2 Ki=0.1 and Kd=2 produce steady state times of 15 seconds, 18 seconds, 15 seconds and 18 seconds. Steady State Error 6%, 6%, 4% and 4.5%. The effect of adding the Kd parameter is not significant on changes in steady state time and Steady State Error.

References

[1] P. Setyadi, A. Premono, W. Sugita, and I. Suryana, “Seminar Nasional-XX Proses Manufaktur Alat Pemisah Plasma Darah Dengan Metode Sentrifugasi,” 2021.

[2] R. Alfian et al., “Perancangan Mesin Centrifuge Berbasis Kontrol Pulse Width Modulation (pwm) dengan menggunakan Mikrokontroller Node MCU Untuk Memisahkan Partikel Organel Darah.”

[3] R. S. Widagdo, B. Hariadi, and K. Setyadjit, “Modelling and Analysis of Ziegler-Nichols and Chien-Hrones-Reswick Tuning PID on DC Motor Speed Control,” Jurnal Teknologi Elektro, vol. 14, no. 1, p. 23, Feb. 2023, doi: 10.22441/jte.2023.v14i1.005.

[4] E. K. Ibrahim, A. H. Issa, and S. A. Gitaffa, “Optimization and Performance Analysis of Fractional Order PID Controller for DC Motor Speed Control,” Journal Europeen des Systemes Automatises, vol. 55, no. 6, pp. 741–748, Dec. 2022, doi: 10.18280/jesa.550605.

[5] “View of DC Motor Speed Control with Proportional Integral Derivative (PID) Control on the Prototype of a Mini-Submarine”.

[6] M. M. El-Saadawi, E. A. Gouda, M. A. Elhosseini, and M. S. Essa, “Identification and Speed Control of DC Motor Using Fractional Order PID: Microcontroller,” European Journal of Electrical Engineering and Computer Science, vol. 4, no. 1, Jan. 2020, doi: 10.24018/ejece.2020.4.1.170.

[7] R. Kristiyono and Wiyono, “Autotuning fuzzy PID controller for speed control of BLDC motor,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 400–407, Sep. 2021, doi: 10.18196/jrc.25114.

[8] S. J. Hammoodi, K. S. Flayyih, and A. R. Hamad, “Design and implementation speed control system of DC motor based on PID control and matlab simulink,” International Journal of Power Electronics and Drive Systems, vol. 11, no. 1, pp. 127–134, Mar. 2020, doi: 10.11591/ijpeds.v11.i1.pp127-134.

[9] E. S. Rahayu, A. Ma’arif, and A. Cakan, “Particle Swarm Optimization (PSO) Tuning of PID Control on DC Motor,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 435–447, 2022, doi: 10.31763/ijrcs.v2i2.476.

[10] A. Idir, K. Khettab, and Y. Bensafia, “Design of an Optimally Tuned Fractionalized PID Controller for DC Motor Speed Control Via a Henry Gas Solubility Optimization Algorithm,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 3, pp. 59–70, Jun. 2022, doi: 10.22266/ijies2022.0630.06.

[11] A. M. Abba, T. Karataev, S. Thomas, A. M. Ali, I. Yau, and S. A. Mikail, “Optimal PID Controller Tuning for DC Motor Speed Control Using Smell Agent Optimization Algorithm,” FUOYE Journal of Engineering and Technology, vol. 7, no. 1, Mar. 2022, doi: 10.46792/fuoyejet.v7i1.740.

[12] A. Ma’Arif, Iswanto, N. M. Raharja, P. A. Rosyady, A. R. C. Baswara, and A. A. Nuryono, “Control of DC Motor Using Proportional Integral Derivative (PID): Arduino Hardware Implementation,” in Proceeding - 2020 2nd International Conference on Industrial Electrical and Electronics, ICIEE 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 74–78. doi: 10.1109/ICIEE49813.2020.9277258.

[13] “1493-1497”.

[14] “DC Motor Rotary Speed Control with Arduino UNO Based PID Control _ Rikwan _ Control Systems and Optimization Letters”.

[15] A. Ma’arif and A. Çakan, “Simulation and arduino hardware implementation of dc motor control using sliding mode controller,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 582–587, Nov. 2021, doi: 10.18196/jrc.26140.

Downloads

Published

2024-11-10

How to Cite

Design and manufacturing of control circuits for centrifuge device motors. (2024). Proceedings Series of Borobudur International Symposium on Energy and Engineering, 1, V124016. https://doi.org/10.31603/biseeng.42

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.