Improving the performance of a gas stove-powered thermoelectric generator (GSPTG) by adding a fin hot side heat exchanger (F-HHX)

Improving the performance of a gas stove-powered thermoelectric generator (GSPTG) by adding a fin hot side heat exchanger (F-HHX)

Authors

  • A Jamaldi Department of Mechanical Engineering, Sekolah Tinggi Teknologi Warga Surakarta, Sukoharjo, Indonesia
  • N T Atmoko Department of Mechanical Engineering, Politeknik Negeri Cilacap, Cilacap, Indonesia
  • H K Hassan Zanzibar Water Authority – ZAWA, P.O.Box 460, Mabluu, Zanzibar, Tanzania
  • F Fariyono Department of Electrical Engineering, Sekolah Tinggi Teknologi Warga Surakarta, Sukoharjo, Indonesia

Keywords:

GSPTG, F-HHX, TEG module

Abstract

Utilizing waste heat into electrical energy from conventional gas stoves is possible by applying a thermoelectric generator (TEG). This research conducted a more in-depth study regarding the use of a Fin Hot Side Heat Exchanger (F-HHX) of a Gas Stove Powered Thermoelectric Generator (GSPTG) to improve the produced power output from TEG. The three models of F-HHX used in this research are short fin, long fin, and tilted fin. Four TEG are connected in a series circuit and placed on the gas stove. Measurements were made on temperature and electrical output from TEG. The energy balance calculation was carried out to determine the efficiency of GSPTG. The research results show that using F-HHX will affect the energy balance and electrical output from GSPTG. The tilted fin type absorbs the most heat energy from a heat source at 94.112 J/s. The results of measuring the power output of the TEG module when the F-HHX tilted fin model is applied produce the highest power output at 3.369 Watts if compared with the other fin. Using the F-HHX tilted fin model indicates that it is more effective as a GPSTG hot side heat exchanger because it absorbs more heat and produces a power output.

References

K. Thoday, P. Benjamin, M. Gan, and E. Puzzolo, “The Mega Conversion Program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion,” Energy for Sustainable Development, vol. 46, pp. 71–81, 2018, doi: 10.1016/j.esd.2018.05.011.

[2] P. P. Gohil and S. A. Channiwala, “Experimental Investigation of Performance of Conventional LPG Cooking Stove,” Fundamental J. Thermal Science and Engineering, vol. 1, no. 1, pp. 25–34, 2011.

[3] A. Elghool, F. Basrawi, T. K. Ibrahim, K. Habib, H. Ibrahim, and D. M. N. D. Idris, “A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance,” Energy Conversion and Management, vol. 134, pp. 260–277, 2017, doi: 10.1016/j.enconman.2016.12.046.

[4] D. Champier, J. P. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, “Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove,” Energy, vol. 36, no. 3, pp. 1518–1526, 2011, doi: 10.1016/j.energy.2011.01.012.

[5] M. C. Barma, M. Riaz, R. Saidur, and B. D. Long, “Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater,” Energy Conversion and Management, vol. 98, pp. 303–313, 2015, doi: 10.1016/j.enconman.2015.03.103.

[6] D. Champier, “Thermoelectric generators: A review of applications,” Energy Conversion and Management, vol. 140, pp. 167–181, 2017, doi: 10.1016/j.enconman.2017.02.070.

[7] N. T. Atmoko, A. Jamaldi, and T. W. B. Riyadi, “An Experimental Study of the TEG Performance using Cooling Systems of Waterblock and Heatsink-Fan,” Automotive Experiences, vol. 5, no. 3, pp. 361–367, 2022, doi: 10.31603/ae.6250.

[8] M. Borcuch, M. Musiał, S. Gumuła, K. Sztekler, and K. Wojciechowski, “Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system,” Applied Thermal Engineering, vol. 127, pp. 1355–1363, 2017, doi: 10.1016/j.applthermaleng.2017.08.147.

[9] A. Rezania, K. Yazawa, L. A. Rosendahl, and A. Shakouri, “Co-optimized design of microchannel heat exchangers and thermoelectric generators,” International Journal of Thermal Sciences, vol. 72, pp. 73–81, 2013, doi: 10.1016/j.ijthermalsci.2013.05.002.

[10] K. Nithyanandam and R. L. Mahajan, “Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery,” International Journal of Heat and Mass Transfer, vol. 122, pp. 877–883, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.02.029.

[11] W. He, S. Wang, X. Zhang, Y. Li, and C. Lu, “Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat,” Energy, vol. 91, pp. 1–9, 2015, doi: 10.1016/j.energy.2015.08.022.

[12] J. Liu, S. Yadav, and S. C. Kim, “Performance of a thermoelectric generator system for waste heat recovery utilizing plate fin heat sink in bronze ingot casting industry,” Case Studies in Thermal Engineering, vol. 38, no. August, p. 102340, 2022, doi: 10.1016/j.csite.2022.102340.

[13] G. N. Reddy, V. Venkatesan, and U. Maniyar, “Estimation of harvestable energy from vehicle waste heat,” International Conference on Renewable Energy Research and Applications, ICRERA 2015, vol. 5, pp. 618–625, 2015, doi: 10.1109/ICRERA.2015.7418487.

[14] Y. S. H. Najjar and M. M. Kseibi, “Heat transfer and performance analysis of thermoelectric stoves,” Applied Thermal Engineering, vol. 102, no. March, pp. 1045–1058, 2016, doi: 10.1016/j.applthermaleng.2016.03.114.

[15] N. T. Atmoko, T. W. B. Riyadi, B. R. Utomo, A. Jamaldi, and A. S. Nugroho, “Heat Transfer Analysis and Performance Investigation of Generator Thermoelectric Applied in LPG Stove Waste Heat Recovery,” International Journal of Renewable Energy Research, vol. 13, no. 1, pp. 70–76, 2023, doi: 10.20508/ijrer.v13i1.13137.g8696.

[16] A. Royale and M. Simic, “Research in vehicles with thermal energy recovery systems,” Procedia Computer Science, vol. 60, no. 1, pp. 1443–1452, 2015, doi: 10.1016/j.procs.2015.08.221.

[17] X. Liu, Y. D. Deng, K. Zhang, M. Xu, Y. Xu, and C. Q. Su, “Experiments and simulations on heat exchangers in thermoelectric generator for automotive application,” Applied Thermal Engineering, vol. 71, no. 1, pp. 364–370, 2014, doi: 10.1016/j.applthermaleng.2014.07.022.

[18] B. R. Utomo, A. Sulistyanto, T. W. B. Riyadi, and A. T. Wijayanta, “Enhanced Performance of Combined Photovoltaic–Thermoelectric Generator and Heat Sink Panels with a Dual-Axis Tracking System,” Energies, vol. 16, no. 6, 2023, doi: 10.3390/en16062658.

[19] N. T. Atmoko, T. W. B. Riyadi, H. Haikal, Amarulloh, and H. L. Wijayanto, “The Experimental Investigation of Heating Rate Variant Method to Produce Power Output Generated by Thermoelectric Generator SP1848- The Experimental Investigation of Heating Rate Variant Method to Produce Power Output Generated by Thermoelectric Generator,” Journal of Physics: Conference Series PAPER, vol. 2406, 2022, doi: 10.1088/1742-6596/2406/1/012008.

[20] T. Widodo, B. Riyadi, B. Radiant, M. Effendy, A. Tri, and H. H. Al-kayiem, “Effect of thermal cycling with various heating rates on the performance of thermoelectric modules,” International Journal of Thermal Sciences, vol. 178, no. March, p. 107601, 2022, doi: 10.1016/j.ijthermalsci.2022.107601.

Downloads

Published

2024-11-10

How to Cite

Improving the performance of a gas stove-powered thermoelectric generator (GSPTG) by adding a fin hot side heat exchanger (F-HHX). (2024). Proceedings Series of Borobudur International Symposium on Energy and Engineering, 1, V124013. https://doi.org/10.31603/biseeng.36