Local stability analysis of dynamic model on dengue transmission
Keywords:
SEIRRD model, Dengue transmission, Local stability analysisAbstract
Dengue fever transmission in Indonesia has an advanced amount. In this article, dynamic model of interaction between human and Aedes aegypti mosquitos is learned. The SEIRRD (Susceptible, Exposed, Infected, Recovered, Deceased) model is used in this article. The purpose in this model is to describe the stability of dengue transmission, so that we can analyze the developed of epidemic model in mathematic field. Using NGM method to analyze basic reproduction number and applying Routh-Hurwitz criteria method to show the local stability of model. Then, two equilibrium points, called endemic and non-endemic equilibrium points, are obtained. The result of basic reproduction number is described the stability analysis. If basic reproduction number less than one, the endemic equilibrium point is locally asymptotically stable and otherwise. Local stability analysis at the equilibrium point is determined through parameter analysis. Furthermore, numerical simulations are carried out by fitting the data to obtained the result of the parameters. The results of numerical simulations explain the spread of dengue transmission.
References
[1] F. Nurbaya and J. Pertiwi, “Analisis Penanggulangan Demam Berdarah Dengue (Dbd) Di Kabupaten Sragen,” Jurnal Manajemen Informasi dan Administrasi Kesehatan (JMIAK), vol. 2, no. 2, 2019, doi: 10.32585/jmiak.v2i02.663.
[2] M. Faid and D. D. Purwanto, “Desain Sistem Pakar Untuk Mendiagnosa Penyakit Demam Berdarah Dengue (DBD),” Journal of Information System,Graphics, Hospitality and Technology, vol. 1, no. 01, pp. 25–29, 2019, doi: 10.37823/insight.v1i01.13.
[3] N. R. Dewi, “Demam Berdarah Dengue,” Buletin Jendela Epidemiologi, vol. 2, p. 48, 2015.
[4] A. pardi Agustina anjel, “ANALISIS MODEL SIR-ASI PADA PENYAKIT DEMAM BERDARAH DENGUE,” 2023.
[5] G. C. D. Podung, S. N. N. Tatura, and M. F. J. Mantik, “Faktor Risiko Terjadinya Sindroma Syok Dengue pada Demam Berdarah Dengue,” Jurnal Biomedik (Jbm), vol. 13, no. 2, p. 161, 2021, doi: 10.35790/jbm.13.2.2021.31816.
[6] P. R. Murugadoss, V. Ambalarajan, V. Sivakumar, P. B. Dhandapani, and D. Baleanu, “Analysis of Dengue Transmission Dynamic Model by Stability and Hopf Bifurcation with Two-Time Delays,” Frontiers in Bioscience - Landmark, vol. 28, no. 6, 2023, doi: 10.31083/j.fbl2806117.
[7] B. Wang, X. Tian, R. Xu, and C. Song, “Threshold dynamics and optimal control of a dengue epidemic model with time delay and saturated incidence,” Journal of Applied Mathematics and Computing, vol. 69, no. 1, pp. 871–893, 2023, doi: 10.1007/s12190-022-01766-3.
[8] H. R. Pandey, G. R. Phaijoo, and D. B. Gurung, “Analysis of dengue infection transmission dynamics in Nepal using fractional order mathematical modeling,” Chaos, Solitons and Fractals: X, vol. 11, 2023, doi: 10.1016/j.csfx.2023.100098.
[9] N. Anandika, “BAB II TINJAUAN PUSTAKA A. Demam Berdarah,” p. 38;64, 2020.
[10] C. Xu, Y. Yu, G. Ren, Y. Sun, and X. Si, “Stability analysis and optimal control of a fractional-order generalized SEIR model for the COVID-19 pandemic,” Applied Mathematics and Computation, vol. 457, p. 128210, 2023, doi: 10.1016/j.amc.2023.128210.
[11] J. Z. Ndendya, L. Leandry, and A. M. Kipingu, “A next-generation matrix approach using Routh–Hurwitz criterion and quadratic Lyapunov function for modeling animal rabies with infective immigrants,” Healthcare Analytics, vol. 4, no. June, p. 100260, 2023, doi: 10.1016/j.health.2023.100260.
Downloads
Published
Conference Proceedings Volume
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.