Spatial regression of poverty in East Java Province with distance weighting matrix
Keywords:
Poverty, Spatial regression, East JavaAbstract
Poverty has emerged as a pressing issue in developing nations, such as Indonesia. It refers to a state where individuals are unable to meet their fundamental necessities. Between September 2020 and March 2021, there was a notable rise of 20.09 thousand individuals living in poverty in urban regions. This increase was the most significant in East Java Province when compared to other provinces in Indonesia. Analyze poverty cases using spatial analysis with distance weighting matrix. Poverty in a region is influenced by poverty in the surrounding areas, resulting in poverty data that includes spatial effects or regional aspects. To analyze data with these spatial effects or regional aspects spatial regression is employed. In this research, the variable used is the poverty level in the Eastern region of Java Province (Y), with four X variables, average years of schooling (X1), minimum wage per regency city (X2), open unemployment rate (X3), and total population (X4). The weighting matrix utilized is the Euclidean Distance Weighting Matrix, which calculated the distance weighting matrix between different areas. The method used in this study uses spatial regression model. The best Spatial Regression Model used is the Spatial Error Model (SEM). Modeling results using the Spatial Error Model (SEM) and the factors that influence poverty are average years of schooling (X1) and open unemployment rate (X3).
References
[1] S. Soekanto and B. Sulistyowati, Sosiologi : Suatu pengantar, Ed. Revisi. Jakarta: Rajagrafindo Persada, 2017.
[2] M. I. Rizki and T. A. Taqiyyuddin, “Pemodelan Regresi Spatial Autoregressive Fixed Effect Model Data Panel Pada Tingkat Kemiskinan Di Provinsi Jawa Barat,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 14, no. 1, pp. 44–51, 2021, doi: 10.36456/jstat.vol14.no1.a3816.
[3] B. P. S. (BPS), “Provinsi Jawa Timur Dalam Angka 2021,” BPS Provinsi Jawa Timur, 2021.
[4] B. P. S. (BPS), Perkembangan Pembangunan Provinsi Jawa Timur. BPS Provinsi Jawa Timur, 2022.
[5] L. Priseptiawan and W. P. Primandhana, “Analisis faktor-faktor yang mempengaruhi kemiskinan,” Forum Ekon., vol. 24, no. 1, pp. 45–53, 2022.
[6] S. Yulianto, A. Djuraidah, and A. H. Wigena, “Model Otoregresif Simultan Bayes untuk Analisis Data Kemiskinan,” Bandung: Statistika, Universitas Padjadjaran, 2011, pp. 406–413.
[7] S. Yulianto and C. A. Ayuwida, “Model tingkat kemiskinan Provinsi Jawa Timur dengan analisis regresi spasial,” Semin. Nas. Mat. Dan Pendidik. Mat. (6 th Senat., vol. 6, pp. 121–127, 2021.
[8] S. Yulianto and G. E. Romandilla, “Pemodelan Regresi Data Panel pada Data Kemiskinan di Provinsi Jawa Timur,” Semin. Nas. Mat. Dan Pendidik. Mat. (7th Senat., vol. 7, no. November 2022, pp. 29–36, 2022.
[9] W. Pramesti, F. Fitriani, and K. L. Nirmala, “Spatial Autoregresive Moving Average Pada Pemodelan Persentase Penduduk Miskin Kabupaten/Kota Di Provinsi Jawa Timur Tahun 2020,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 15, no. 1, pp. 158–166, 2022, doi: 10.36456/jstat.vol15.no1.a5838.
[10] L. Anselin, Spatial Econometrics : Methods and Models. Dordrecht: Kluwer Academic Publishers, 1988.
[11] K. K. S. Dewi P, M. Susilowati, and I. W. Sumarjaya, “Metode Spatial Autoregressive Dalam Memodelkan Masyarakat Yang Berperilaku Mck Di Sungai,” E-Jurnal Mat., vol. 6, no. 4, pp. 233–240, 2017, doi: 10.24843/mtk.2017.v06.i04.p171.
[12] R. Rahmawati, D. Safitri, and O. U. Fairuzdhiya, “ANALISIS SPASIAL PENGARUH TINGKAT PENGANGGURAN TERHADAP KEMISKINAN DI INDONESIA (Studi Kasus Provinsi Jawa Tengah),” Media Stat., vol. 8, no. 1, pp. 23–30, 2015.
[13] N. M. L. Lispani, I. W. Sumarjaya, and I. K. G. Sukarsa, “Pemodelan Jumlah Tindak Kriminalitas Di Provinsi Jawa Timur Dengan Analisis Regresi Spatial Autoregressive and Moving Average,” E-Jurnal Mat., vol. 7, no. 4, p. 346, 2018, doi: 10.24843/mtk.2018.v07.i04.p224.
[14] K. S. Suryowati, M. Nahak, and R. D. Bekti, “Penerapan Model Spasial Menggunakan Matriks Pembobot Queen Contiguity dan Euclidean Distance Terhadap Kasus Gizi Buruk Balita di Provinsi Nusa Tenggara Timur,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 16, no. 1, pp. 298–308, 2023, doi: 10.36456/jstat.vol16.no1.a7871.
[15] F. B. Lega, R. Dwi Bekti, J. Statistka, and A. Yogyakarta, “Kajian Pengaruh Matriks Pembobot Spasial Dalam Model Spasial Data Panel Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Tingkat Kemiskinan Di Provinsi Nusa Tenggara Timur,” J. Stat. Ind. dan Komputasi, vol. 8, no. 1, pp. 1–14, 2023.
[16] J. LeSage and R. K. Pace, Introduction to Spatial Econometrics. CRC Press, Taylor and Francis Group, 2009.
[17] S. Sukarna, W. Sanusi, and H. Hardiono, “Analisis Moran’s I, Geary’s C, dan Getis-Ord G pada Penerapan Jumlah Penderita Kusta di Kabupaten Gowa,” J. Math. Comput. Stat., vol. 2, no. 2, p. 151, 2020, doi: 10.35580/jmathcos.v2i2.12577.
[18] J. Lee and D. W. S. Wong, Statistical Analysis with Arcview Gis. New York: John Wiley & Sons, 2005.
Downloads
Published
Conference Proceedings Volume
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.