Technology and economic perspective of hydrogen as a green fuel on ship

Technology and economic perspective of hydrogen as a green fuel on ship

Authors

  • B Ariani Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
  • F M Felayati Universitas Hang Tuah Surabaya, Surabaya, Indonesia
  • M A Batutah Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
  • M Rosyadi Universitas Muhammadiyah Surabaya, Surabaya, Indonesia

Keywords:

Hydrogen, Green fuel, Ship

Abstract

The maritime industry is currently navigating a critical juncture with the imperative goals of de-carbonization and achieving zero carbon emissions, driven by increasingly stringent environmental regulations. As the world grapples with the escalating depletion of fossil fuels, the industry is compelled to explore alternative energy sources. Green hydrogen, produced through electrolysis and devoid of carbon emissions, emerges as a promising solution for the maritime sector's sustainable future. Despite the potential benefits, the development of hydrogen as a viable marine fuel faces numerous technical and economic challenges. This article provides a thorough examination of the technical and economic aspects of hydrogen's development, offering insights that can inform evaluations, propose solutions, and catalyze new research initiatives. By addressing these challenges, the maritime industry can pave the way for the widespread adoption of hydrogen technology, contributing significantly to the sector's commitment to environmental sustainability. This comprehensive analysis aims to facilitate in-formed decision-making, foster innovation, and accelerate the integration of hydrogen as a clean and efficient fuel for ships.

References

[1] H. G. PhD, T. Boravelli, J. D. S. PhD, and H. R. Safarpour, “Production of Syngas from Biomass Using a Downdraft Gasifier,” International Journal of Engineering Research and Applications, vol. 07, no. 06, 2017, doi: 10.9790/9622-0706026171.

[2] M. Genovese and P. Fragiacomo, “Hydrogen refueling station: Overview of the technological status and research enhancement,” Journal of Energy Storage, vol. 61. 2023. doi: 10.1016/j.est.2023.106758.

[3] L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S. W. Verbruggen, and S. Lenaerts, “Challenges in the use of hydrogen for maritime applications,” Energy and Environmental Science, vol. 14, no. 2. 2021. doi: 10.1039/d0ee01545h.

[4] H. Canton, “International Energy Agency—IEA,” in The Europa Directory of International Organizations 2021, 2021. doi: 10.4324/9781003179900-103.

[5] S. Wang et al., “Decarbonizing in Maritime Transportation: Challenges and Opportunities,” Journal of Transportation Technologies, vol. 13, no. 02, 2023, doi: 10.4236/jtts.2023.132015.

[6] S. Sharma, S. Agarwal, and A. Jain, “Significance of hydrogen as economic and environmentally friendly fuel,” Energies, vol. 14, no. 21. 2021. doi: 10.3390/en14217389.

[7] O. Boucher, P. Friedlingstein, B. Collins, and K. P. Shine, “The indirect global warming potential and global temperature change potential due to methane oxidation,” Environmental Research Letters, vol. 4, no. 4, 2009, doi: 10.1088/1748-9326/4/4/044007.

[8] S. Gössling, C. Meyer-Habighorst, and A. Humpe, “A global review of marine air pollution policies, their scope and effectiveness,” Ocean and Coastal Management, vol. 212. 2021. doi: 10.1016/j.ocecoaman.2021.105824.

[9] Z. Domachowski, “Minimizing Greenhouse Gas Emissions from Ships Using a Pareto Multi-Objective Optimization Approach,” Polish Maritime Research, vol. 28, no. 2, 2021, doi: 10.2478/pomr-2021-0026.

[10] A. Romano and Z. Yang, “Decarbonisation of shipping: A state of the art survey for 2000–2020,” Ocean and Coastal Management, vol. 214, 2021, doi: 10.1016/j.ocecoaman.2021.105936.

[11] A. S. Alamoush, A. I. Ölçer, and F. Ballini, “Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction,” Cleaner Logistics and Supply Chain, vol. 3. 2022. doi: 10.1016/j.clscn.2021.100021.

[12] DNV GL - Maritime, “Assessment of Selected Ternative Fuels and Technologies,” Imo, vol. 391, no. June, 2019.

[13] International Maritime Organization, “IMO 2020 : consistent implementation of MARPOL Annex VI.,” OMi, 2020.

[14] European Commission, “Reducing emissions from the shipping sector | Climate Action,” Climate Action Committee. 2016.

[15] Second IMO GHG study, “Second IMO GHG study, 2009. International Maritime Organization (IMO),” … Maritime Organization (IMO …, 2009.

[16] A. Al-Enazi, E. C. Okonkwo, Y. Bicer, and T. Al-Ansari, “A review of cleaner alternative fuels for maritime transportation,” Energy Reports, vol. 7. 2021. doi: 10.1016/j.egyr.2021.03.036.

[17] F. Dawood, M. Anda, and G. M. Shafiullah, “Hydrogen production for energy: An overview,” International Journal of Hydrogen Energy, vol. 45, no. 7. 2020. doi: 10.1016/j.ijhydene.2019.12.059.

[18] O. B. Inal, B. Zincir, and C. Dere, “Hydrogen as Maritime Transportation Fuel: A Pathway for Decarbonization,” in Energy, Environment, and Sustainability, 2022. doi: 10.1007/978-981-16-8344-2_4.

[19] S. Dunn, “Hydrogen futures: Toward a sustainable energy system,” International Journal of Hydrogen Energy, vol. 27, no. 3, 2002, doi: 10.1016/S0360-3199(01)00131-8.

[20] S. M. M. Ehteshami and S. H. Chan, “The role of hydrogen and fuel cells to store renewable energy in the future energy network - potentials and challenges,” Energy Policy, vol. 73, 2014, doi: 10.1016/j.enpol.2014.04.046.

[21] J. Nowotny and T. N. Veziroglu, “Impact of hydrogen on the environment,” International Journal of Hydrogen Energy, vol. 36, no. 20, 2011, doi: 10.1016/j.ijhydene.2011.07.071.

[22] I. Dincer, “Environmental and sustainability aspects of hydrogen and fuel cell systems,” International Journal of Energy Research, vol. 31, no. 1, 2007, doi: 10.1002/er.1226.

[23] K. Salikhov, N. D. Stoyanov, and T. V. Stoyanova, “Using optical activation to create hydrogen and hydrogen-containing gas sensors,” in Key Engineering Materials, 2020, vol. 854 KEM. doi: 10.4028/www.scientific.net/KEM.854.87.

[24] M. Dvoynikov, G. Buslaev, A. Kunshin, D. Sidorov, A. Kraslawski, and M. Budovskaya, “New concepts of hydrogen production and storage in Arctic region,” Resources, vol. 10, no. 1. 2021. doi: 10.3390/resources10010003.

[25] G. Squadrito, G. Maggio, and A. Nicita, “The green hydrogen revolution,” Renewable Energy, vol. 216, 2023, doi: 10.1016/j.renene.2023.119041.

[26] C. B. Agaton, K. I. T. Batac, and E. M. Reyes, “Prospects and challenges for green hydrogen production and utilization in the Philippines,” International Journal of Hydrogen Energy, vol. 47, no. 41. 2022. doi: 10.1016/j.ijhydene.2022.04.101.

[27] S. Shiva Kumar and H. Lim, “An overview of water electrolysis technologies for green hydrogen production,” Energy Reports, vol. 8. 2022. doi: 10.1016/j.egyr.2022.10.127.

[28] M. Ostadi, K. G. Paso, S. Rodriguez-Fabia, L. E. Øi, F. Manenti, and M. Hillestad, “Process integration of green hydrogen: Decarbonization of chemical industries,” Energies, vol. 13, no. 18, 2020, doi: 10.3390/en13184859.

[29] A. Ajanovic, M. Sayer, and R. Haas, “The economics and the environmental benignity of different colors of hydrogen,” International Journal of Hydrogen Energy, vol. 47, no. 57, 2022, doi: 10.1016/j.ijhydene.2022.02.094.

[30] M. Willuhn, “Green hydrogen to reach price parity with grey hydrogen in 2030,” pv magazine International. 2020.

[31] R. W. Howarth and M. Z. Jacobson, “How green is blue hydrogen?,” Energy Science and Engineering, vol. 9, no. 10, 2021, doi: 10.1002/ese3.956.

[32] S. Mantilla and D. M. F. Santos, “Green and Blue Hydrogen Production: An Overview in Colombia,” Energies, vol. 15, no. 23. 2022. doi: 10.3390/en15238862.

[33] A. O. Oni, K. Anaya, T. Giwa, G. Di Lullo, and A. Kumar, “Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions,” Energy Conversion and Management, vol. 254, p. 115245, 2022, doi: https://doi.org/10.1016/j.enconman.2022.115245.

[34] C. Bauer et al., “On the climate impacts of blue hydrogen production,” Sustainable Energy and Fuels, vol. 6, no. 1, 2022, doi: 10.1039/d1se01508g.

[35] Y. Han, J. Liao, W. Li, H. Ma, and Z. Bai, “Insight into the interaction between hydrogen bonds in brown coal and water,” Fuel, vol. 236, 2019, doi: 10.1016/j.fuel.2018.09.119.

[36] M. McConnachie, M. Konarova, and S. Smart, “Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production,” International Journal of Hydrogen Energy, vol. 48, no. 66. 2023. doi: 10.1016/j.ijhydene.2023.03.123.

[37] S. Anwar and X. Li, “Production of hydrogen from fossil fuel: A review,” Frontiers in Energy, vol. 17, no. 5. 2023. doi: 10.1007/s11708-023-0886-4.

[38] F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renewable and Sustainable Energy Reviews, vol. 45. 2015. doi: 10.1016/j.rser.2015.01.062.

[39] F. Mneimneh, H. Ghazzawi, M. Abu Hejjeh, M. Manganelli, and S. Ramakrishna, “Roadmap to Achieving Sustainable Development via Green Hydrogen,” Energies, vol. 16, no. 3, 2023, doi: 10.3390/en16031368.

[40] S. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,” Materials Science for Energy Technologies, vol. 2, no. 3. 2019. doi: 10.1016/j.mset.2019.03.002.

[41] İ. Dinçer and C. Zamfirescu, Sustainable energy systems and applications. 2012. doi: 10.1007/978-0-387-95861-3.

[42] M. Amin et al., “Hydrogen production through renewable and non-renewable energy processes and their impact on climate change,” International Journal of Hydrogen Energy, vol. 47, no. 77. 2022. doi: 10.1016/j.ijhydene.2022.07.172.

[43] S. F. Ahmed et al., “Biohydrogen production from wastewater-based microalgae: Progresses and challenges,” International Journal of Hydrogen Energy, vol. 47, no. 88, 2022, doi: 10.1016/j.ijhydene.2021.09.178.

[44] S. K. Bhatia et al., “Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges,” Science of the Total Environment, vol. 751. 2021. doi: 10.1016/j.scitotenv.2020.141599.

[45] S. E. Hosseini, M. Abdul Wahid, M. M. Jamil, A. A. M. Azli, and M. F. Misbah, “A review on biomass-based hydrogen production for renewable energy supply,” International Journal of Energy Research, vol. 39, no. 12. 2015. doi: 10.1002/er.3381.

[46] Y. Amekan, D. S. A. P. Wangi, M. N. Cahyanto, Sarto, and J. Widada, “Effect of different inoculum combination on biohydrogen production from melon fruit waste,” International Journal of Renewable Energy Development, vol. 7, no. 2, 2018, doi: 10.14710/ijred.7.2.101-109.

[47] E. B. Agyekum, C. Nutakor, A. M. Agwa, and S. Kamel, “A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation,” Membranes, vol. 12, no. 2. 2022. doi: 10.3390/membranes12020173.

[48] M. Shahabuddin, B. B. Krishna, T. Bhaskar, and G. Perkins, “Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses,” Bioresource Technology, vol. 299. 2020. doi: 10.1016/j.biortech.2019.122557.

[49] J. C. Elauria, M. L. Y. Castro, and D. A. Racelis, “Sustainable biomass production for energy in the Philippines,” Biomass and Bioenergy, vol. 25, no. 5, 2003, doi: 10.1016/S0961-9534(03)00089-8.

[50] J. C. Elauria, M. L. Y. Castro, M. M. Elauria, S. C. Bhattacharya, and P. Abdul Salam, “Assessment of sustainable energy potential of non-plantation biomass resources in the Philippines,” Biomass and Bioenergy, vol. 29, no. 3, 2005, doi: 10.1016/j.biombioe.2005.03.007.

[51] C. Tarhan and M. A. Çil, “A study on hydrogen, the clean energy of the future: Hydrogen storage methods,” Journal of Energy Storage, vol. 40. 2021. doi: 10.1016/j.est.2021.102676.

[52] P. J. Megia, A. J. Vizcaino, J. A. Calles, and A. Carrero, “Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review,” Energy and Fuels, vol. 35, no. 20. 2021. doi: 10.1021/acs.energyfuels.1c02501.

[53] F. Zhang, P. Zhao, M. Niu, and J. Maddy, “The survey of key technologies in hydrogen energy storage,” International Journal of Hydrogen Energy, vol. 41, no. 33. 2016. doi: 10.1016/j.ijhydene.2016.05.293.

[54] T. Zhang, J. Uratani, Y. Huang, L. Xu, S. Griffiths, and Y. Ding, “Hydrogen liquefaction and storage: Recent progress and perspectives,” Renewable and Sustainable Energy Reviews, vol. 176. 2023. doi: 10.1016/j.rser.2023.113204.

[55] J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, and J. Yang, “Development of high pressure gaseous hydrogen storage technologies,” International Journal of Hydrogen Energy, vol. 37, no. 1, 2012, doi: 10.1016/j.ijhydene.2011.02.125.

[56] L. Pu, H. Yu, M. Dai, Y. He, R. Sun, and T. Yan, “Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation,” Kexue Tongbao/Chinese Science Bulletin, vol. 67, no. 19, 2022, doi: 10.1360/TB-2022-0063.

[57] E. Boateng and A. Chen, “Recent advances in nanomaterial-based solid-state hydrogen storage,” Materials Today Advances, vol. 6, 2020, doi: 10.1016/j.mtadv.2019.100022.

[58] R. Chandra Muduli and P. Kale, “Silicon nanostructures for solid-state hydrogen storage: A review,” International Journal of Hydrogen Energy, vol. 48, no. 4. 2023. doi: 10.1016/j.ijhydene.2022.10.055.

[59] A. N. Alkhaledi, S. Sampath, and P. Pilidis, “Economic analysis of a zero-carbon liquefied hydrogen tanker ship,” International Journal of Hydrogen Energy, vol. 47, no. 66, 2022, doi: 10.1016/j.ijhydene.2022.06.168.

[60] J. R. Bartels, M. B. Pate, and N. K. Olson, “An economic survey of hydrogen production from conventional and alternative energy sources,” International Journal of Hydrogen Energy, vol. 35, no. 16, 2010, doi: 10.1016/j.ijhydene.2010.04.035.

Downloads

Published

2024-10-20

How to Cite

Technology and economic perspective of hydrogen as a green fuel on ship. (2024). BIS Energy and Engineering, 1, V124045. https://doi.org/10.31603/biseeng.195

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.