Cross-layer analysis of physically unclonable functions in cyber-physical systems
Keywords:
Cross-layer analysis, Unclonable functions, Cyber-physical systemsAbstract
Several key factors drive the exploration of PUFs across multiple layers of CPS: rising cybersecurity threats, unique security challenges of CPS, the need for holistic security approaches, scalability, and interoperability. The purposes of this analysis include: comprehensive vulnerability assessment, understanding cross-layer dependencies, ensuring device-level security, and preparing for future threats. Physically Unclonable Functions (PUFs) with Computer-Aided Design (CAD) are used for the design, analysis, and verification of electronic systems. PUF designers may utilize CAD tools for designing and simulating PUF circuits. PUFs are investigated for their integration into Cyber-Physical Systems (CPS) to address security challenges in the convergence of physical and digital components. Cross-layer analyses and evaluations aim to understand how PUFs can contribute to the overall security posture of CPS. There are methods to evaluate the effectiveness of integrating Physically Unclonable Functions (PUF) in enhancing hardware security at the physical level within Cyber-Physical Systems (CPS) is penetration testing, vulnerability analysis, security testing, attack simulation and performance analysis. Here are several domains and disciplines where the findings and implications of this study can be applied: Cybersecurity, Embedded Systems Design, Cryptography, Computer Engineering, IoT (Internet of Things), Information Security, Systems Engineering. The outcomes research on Cross-Layer Analysis of Physically Unclonable Functions in Cyber-Physical Systems include: identification of vulnerabilities, insight into cross-layer dependencies, assessment of PUF integration, Development of security strategies, enhanced security posture.
References
[1] Wachsmann, C.; Sadeghi, A.-R. Basics of Physically Unclonable Functions. In; 2015.
[2] Helfmeier, C.; Boit, C.; Nedospasov, D.; Seifert, J.P. Cloning Physically Unclonable Functions. In Proceedings of the Proceedings of the 2013 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2013; 2013.
[3] Maes, R. Physically Unclonable Functions; 2013;
[4] Labrado, C.; Thapliyal, H. Design of a Piezoelectric-Based Physically Unclonable Function for IoT Security. IEEE Internet Things J 2019, 6, doi:10.1109/JIOT.2018.2874626.
[5] Zhao, B.; Zhao, P.; Fan, P. Epuf: A Lightweight Double Identity Verification in IoT. Tsinghua Sci Technol 2020, 25, doi:10.26599/TST.2019.9010072.
[6] Tiplea, F.L.; Hristea, C.; Bulai, R. Privacy and Reader-First Authentication in Vaudenay’s RFID Model with Temporary State Disclosure. Computer Science Journal of Moldova 2022, 30, doi:10.56415/csjm.v30.18.
[7] Kim, D.; Im, S.; Kim, D.; Lee, H.; Choi, C.; Cho, J.H.; Ju, H.; Lim, J.A. Reconfigurable Electronic Physically Unclonable Functions Based on Organic Thin-Film Transistors with Multiscale Polycrystalline Entropy for Highly Secure Cryptography Primitives. Adv Funct Mater 2023, 33, doi:10.1002/adfm.202210367.
[8] Kraleva, L.; Mahzoun, M.; Posteuca, R.; Toprakhisar, D.; Ashur, T.; Verbauwhede, I. Cryptanalysis of Strong Physically Unclonable Functions. IEEE Open Journal of the Solid-State Circuits Society 2022, 3, doi:10.1109/ojsscs.2022.3227009.
[9] Zhu, F.; Li, P.; Xu, H.; Wang, R. A Lightweight RFID Mutual Authentication Protocol with PUF. Sensors (Switzerland) 2019, 19, doi:10.3390/s19132957.
[10] Nguyen, K.T.; Laurent, M.; Oualha, N. Survey on Secure Communication Protocols for the Internet of Things. Ad Hoc Networks 2015, 32, doi:10.1016/j.adhoc.2015.01.006.
[11] Kurniawan, R.A.Z.; Wahjuni, S.; Neyman, S.N. Secure Communication Protocol for Arduino-Based IoT Using Lightweight Cryptography. Int J Adv Sci Eng Inf Technol 2022, 12, doi:10.18517/ijaseit.12.2.8601.
[12] Liu, Y.; Peng, Y.; Wang, B.; Yao, S.; Liu, Z. Review on Cyber-Physical Systems. IEEE/CAA Journal of Automatica Sinica 2017, 4, doi:10.1109/JAS.2017.7510349.
[13] Lu, Y. Cyber Physical System (CPS)-Based Industry 4.0: A Survey. Journal of Industrial Integration and Management 2017, 2, doi:10.1142/S2424862217500142.
[14] Oks, S.J.; Jalowski, M.; Lechner, M.; Mirschberger, S.; Merklein, M.; Vogel-Heuser, B.; Möslein, K.M. Cyber-Physical Systems in the Context of Industry 4.0: A Review, Categorization and Outlook. Information Systems Frontiers 2022, doi:10.1007/s10796-022-10252-x.
[15] Raisin, S.N.; Jamaludin, J.; Mohd Rahalim, F.; Jamal Mohamad, F.A.; Naeem, B. Cyber-Physical System (CPS) Application- A REVIEW. REKA ELKOMIKA: Jurnal Pengabdian kepada Masyarakat 2020, 1, doi:10.26760/rekaelkomika.v1i2.52-65.
[16] Saudi, M.M.; Sukardi, S.; Aziz, N.A.A.A.; Ahmad, A.; Husainiamer, M. ‘Afif Malware Classification for Cyber Physical System (CPS) Based on Phylogenetics. Int J Eng Adv Technol 2019, 9, doi:10.35940/ijeat.A2711.109119.
[17] Moreno, J.; Rosado, D.G.; Sánchez, L.E.; Serrano, M.A.; Fernández-Medina, E. Security Reference Architecture for Cyber-Physical Systems (Cps). Journal of Universal Computer Science 2021, 27, doi:10.3897/JUCS.68539.
[18] Valentini, R.; Marco, P. Di; Alesii, R.; Santucci, F. Cross-Layer Analysis of Multi-Static RFID Systems Exploiting Capture Diversity. IEEE Transactions on Communications 2021, 69, doi:10.1109/TCOMM.2021.3096541.
[19] Liu, B.; Han, S.; Peng, H.; Xiang, Z.; Sun, G.; Liang, Y.C. A Cross-Layer Analysis for Full-Duplex Ambient Backscatter Communication System. IEEE Wireless Communications Letters 2020, 9, doi:10.1109/LWC.2020.2987792.
[20] Vuran, M.C.; Akyildiz, I.F. Error Control in Wireless Sensor Networks: A Cross Layer Analysis. IEEE/ACM Transactions on Networking 2009, 17, doi:10.1109/TNET.2008.2009971.
[21] Venkatachalam, K.; Prabu, P.; Balaji, B.S.; Kang, B.G.; Nam, Y.; Abouhawwash, M. Cross-Layer Hidden Markov Analysis for Intrusion Detection. Computers, Materials and Continua 2022, 70, doi:10.32604/cmc.2022.019502.
[22] Stanciu, A.; Cirstea, M.N.; Moldoveanu, F.D. Analysis and Evaluation of PUF-Based SoC Designs for Security Applications. IEEE Transactions on Industrial Electronics 2016, 63, doi:10.1109/TIE.2016.2570720.
[23] Maes, R. Physically Unclonable Function (PUF). In Encyclopedia of Cryptography, Security and Privacy; 2023.
[24] Halak, B. Physically Unclonable Functions; 2018;
[25] Gebali, F.; Mamun, M. Review of Physically Unclonable Functions (PUFs): Structures, Models, and Algorithms. Frontiers in Sensors 2022, 2, doi:10.3389/fsens.2021.751748.
[26] Wachsmann, C.; Sadeghi, A.-R. Physically Unclonable Functions (PUFs): Applications, Models, and Future Directions. Synthesis Lectures on Information Security, Privacy, and Trust 2014, 9, doi:10.2200/s00622ed1v01y201412spt012.
[27] Al-Haidary, M.; Nasir, Q. Physically Unclonable Functions (PUFs): A Systematic Literature Review. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences, ASET 2019; 2019.
[28] Arjona, R.; Prada-Delgado, M.Á.; Arcenegui, J.; Baturone, I. A PUF-and Biometric-Based Lightweight Hardware Solution to Increase Security at Sensor Nodes. Sensors (Switzerland) 2018, 18, doi:10.3390/s18082429.
[29] Xiong, W.; Schaller, A.; Katzenbeisser, S.; Szefer, J. Dynamic Physically Unclonable Functions. In Proceedings of the Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI; 2019.
[30] Shamsoshoara, A.; Korenda, A.; Afghah, F.; Zeadally, S. A Survey on Physical Unclonable Function (PUF)-Based Security Solutions for Internet of Things. Computer Networks 2020, 183.
[31] McGrath, T.; Bagci, I.E.; Wang, Z.M.; Roedig, U.; Young, R.J. A PUF Taxonomy. Appl Phys Rev 2019, 6.
[32] Fernández Aragón, J.; Diez-Senorans, G.; Garcia-Bosque, M.; Celma, S. Ring Oscillator PUF on FPGA: Design and Characterisation by Using Second-Order Compensated Measurement. Jornada de Jóvenes Investigadores del I3A 2022, 10, doi:10.26754/jjii3a.20227004.
[33] Swati; Roy, S.; Singh, J.; Mathew, J. Design and Analysis of DDoS Mitigating Network Architecture. Int J Inf Secur 2023, 22, doi:10.1007/s10207-022-00635-1.
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.