Prototype of battery monitoring system for gasoline vehicle using microcontroller module

Prototype of battery monitoring system for gasoline vehicle using microcontroller module

Authors

  • H Supriyono Department Electrical Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • R A R Prasetyo Department Electrical Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • M I Solihin Department of Mechanical Engineering, UCSI University, Kuala Lumpur, Malaysia

Keywords:

Battery monitoring system, Gasoline vehicle, Microcontroller

Abstract

The condition of the battery in the gasoline vehicle is very important to know because if the condition of the battery has decreased or is not good then it would not be able to start the car engine in the initial ignition phase. The objective of this research is to obtain a battery condition monitoring system on a gasoline car by using a microcontroller-based system. The monitoring system was developed by using research and development method and employing off the shelf components available in the market. The obtained monitoring system was tested on a laboratory scale as well as on an actual gasoline car battery. Laboratory-based and actual environment test results showed that the system was able to measure temperature and voltage well, which has an average difference of 1.058% and 1.010814787% when compared to the measurement results using a commercial thermometer and voltmeter respectively. The system worked stable without any drastic results change. The obtained system could be useful for automotive and transportation areas where the driver will be able to know the battery condition continuously for daily usage and preventive maintenance.

References

[1] R. Dufo-López, T. Cortés-Arcos, J. S. Artal-Sevil and J. L. Bernal-Agustín, Applied Sciences 2021 11, 1099, 1-16 (2021). https://doi.org/10.3390/app11031099.

[2] S. M. Rezvanizaniani, Z. Liu, Y. Chen, and J. Lee, Journal of Power Sources 256, 110-124 (2014).

[3] F. Un-Noor, S. Padmanaban, L. Mihet-Popa, M. N. Mollah and E. Hossain, Energies 2017 10, 1217, 1-82 (2017); doi:10.3390/en10081217.

[4] M. Eider and A. Berl, e-Energy ’18, 586-592 (2018).

[5] M. Kwiecien, J. Badeda, M. Huck, K. Komut, D. Duman, and D. U. Sauer, Applied Science 2018 8, 873, 1-23 (2018a).

[6] M. Kwiecien, M. Huck, J. Badeda, C. Zorer, K. Komut, Q. Yu and D. U. Sauer. 2018b. Variation of Impedance in Lead-Acid Batteries in the Presence of Acid Stratification, Applied Science 2018 8, 1018, 1-24 (2018b).

[7] J. Badeda, M. Kwiecien, D. Schulte and D. U. Sauer, Applied Science 2018 8, 1308, 1-21 (2018). doi:10.3390/app8081308.

[8] G. Ablay, IEEE Transactions on Energy Conversion 29(1), 232-239 (2014).

[9] Y. Qiu, J. Sun, Y. Shang, and D. Wang, Symmetry 2021 13, 1714, 1-16 (2021). https://doi.org/10.3390/sym13091714.

[10] Z. Wang, Q. Ma and Y. Guo. 2021, Actuators 2021 10, 234, 1-13 (2021). https://doi.org/10.3390/act10090234.

[11] J. Jiang, S. Zhao and C. Zhang, World Electric Vehicle Journal 2021 12, 228, 1-15 (2021). https://doi.org/10.3390/wevj12040228.

[12] S. Zhang, M. S. Hosen, T. Kalogiannis, J. V. Mierlo and M. Berecibar, World Electric Vehicle Journal 2021 12, 156 (2021). https://doi.org/10.3390/wevj12030156.

[13] S. Szürke, G. Sütheö, A. Apagyi, I. Lakatos and S. Fischer, Algorithms 2022 15, 467, 1-17 (2022). https://doi.org/10.3390/a15120467.

[14] A. Rauniyar, M. Irfan, O. D. Saputra, J. W. Kim, A. R. Lee, J. M. Jang and S. Y. Shin, Future Internet 2017 9, 28, 1-16 (2017). doi:10.3390/fi9030028.

[15] L. Lin, Y. Liu, W. Ping, and F. Hong, TELKOMNIKA 11(4), 2247-2252 (2013).

[16] T. Vantuch, J. Fulneˇcek, M. Holuša, S. Mišák, and J. Vaculík, Applied Sciences 8, 1-16 (2018).

[17] R. S. Singh, B. S. S. Singh, S. A. Anas, and Y. Yunus, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) 11(4), 38-43 (2015).

[18] R. S. Kumar, S. Saravanan, M. K. R. Sivaram, S. K. Aravindh, K. M. Kiran and M. K. Kumar, Journal of Physics: Conference Series 1916 (2021) 012066, 1-8 (2021). doi:10.1088/1742-6596/1916/1/012066.

[19] G. A. Saputra, and R. S. Rohmah, Emitor 22(01), 83-91 (2022).

[20] S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, and W. Shang, Progress in Natural Science: Materials International 28 (2018) 653–666 (2018).

[21] O. Capron, J. Jaguemont, R. Gopalakrishnan, P. V. den Bossche, N. Omar and J. V. Mierlo, Applied Science 2018 8, 1364, 1-25 (2018). doi:10.3390/app8081364.

[22] H. Susanto and A. Nurcahyo, Khazanah Informatika 6(2), 82-94 (2020).

[23] A. F. Y. Saputro, and D. A. Prasetya, Emitor 22(01), 26-33 (2022).

[24] M. H. R. Rohman, S. Prabowo, and H. H. Nuha, Jurnal Media Informatika Budidarma 6(2), 802-810 (2022).

[25] N. F. Roslan and W. M. W. Muda, Universiti Malaysia Terengganu Journal of Undergraduate Research 2(4), 41-50 (2020).

[26] D. Selvabharathi and N. Muruganantham, Indonesian Journal of Electrical Engineering and Computer Science 18(1), 261-267 (2020).

[27] L. Zhao, C. Wu, X. Zhang, Y. Zhang, C. Zhang, L. Dong, L. Su, and J. Xie, Batteries 2022 8, 264, 1-11 (2022). https://doi.org/10.3390/batteries8120264.

Downloads

Published

2024-10-20

How to Cite

Prototype of battery monitoring system for gasoline vehicle using microcontroller module. (2024). BIS Information Technology and Computer Science, 1, V124023. https://doi.org/10.31603/bistycs.141

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.