Bauxite refinery residue neutralization using active wet carbonation technique

Bauxite refinery residue neutralization using active wet carbonation technique

Authors

  • Inggit Borisha Gadjah Mada University
  • Joko Wintoko Gadjah Mada University
  • Agus Prasetya Gadjah Mada University

Keywords:

Red mud, Indonesia, Carbon dioxide, Mineral carbonate Neutralization

Abstract

Bauxite refinery residue (red mud) is a solid by-product of the alumina refinery industry in which bauxite ore undergoes Bayer Process to produce alumina, which is then converted into aluminium. In fact, the amount of red mud (RM) is numerous, for each ton of alumina product yields 1 to 2 tons of RM. RM is a caustic material (pH 10-13) and carries valuable metals and minerals. Its disposal entangles intricate processes thus, conventional disposal practices comprise depositing it in open dams. The volume of RM continues to accumulate, and these acts possess the potential disaster to harm both environmental along with human health. Previous studies have show RM as environmental remedies, particularly for CO2 capture from flue gas. This study examines the RM originated from Indonesia to neutralize using active wet carbonation technique. The RM-cake-clay-form with 25.5% water content is transformed into a 40% solid content slurry then contacted using CO2 industrial grade at room temperature and atmospheric pressure at gas flowrate 5 L/min for 120 min. According to the study that has been conducted, CO2 showed its potential to neutralized the RM alkalinity from pH 11.25 to 7.44 and generate mineral-carbonate compounds with estimated sequestration capacity 1.424 g CO2/100 g RM from the obtained carbonated filtrate through bicarbonate and carbonate ion presence.

References

[1] P. S. Reddy et al., “Properties and Assessment of Applications of Red Mud (Bauxite Residue): Current Status and Research Needs,” Mar. 01, 2021, Springer Science and Business Media B.V. doi: 10.1007/s12649-020-01089-z.

[2] S. Agrawal, V. Rayapudi, and N. Dhawan, “Extraction of Iron values from Red mud,” 2018. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853

[3] M. A. Khairul, J. Zanganeh, and B. Moghtaderi, “The composition, recycling and utilisation of Bayer red mud,” Resour Conserv Recycl, vol. 141, no. September 2018, pp. 483–498, 2019, doi: 10.1016/j.resconrec.2018.11.006.

[4] Z. X. Chen, N. T. Zhang, S. R. Yan, J. Fish, and S. H. Chu, “CO2 mineralization into waste-valorized lightweight artificial aggregate,” Constr Build Mater, vol. 409, Dec. 2023, doi: 10.1016/j.conbuildmat.2023.133861.

[5] B. Ozden, C. Brennan, and S. Landsberger, “Investigation of bauxite residue (red mud) in terms of its environmental risk,” J Radioanal Nucl Chem, vol. 319, no. 1, pp. 339–346, 2019, doi: 10.1007/s10967-018-6355-6.

[6] W. Cui et al., “Current research status and emerging trends in utilization of red mud resources: A study based on bibliometric network analysis,” Constr Build Mater, vol. 442, no. August 2023, p. 137605, 2024, doi: 10.1016/j.conbuildmat.2024.137605.

[7] M. Taneez and C. Hurel, “A review on the potential uses of red mud as amendment for pollution control in environmental media,” Aug. 01, 2019, Springer Verlag. doi: 10.1007/s11356-019-05576-2.

[8] H. Hao, Y. Geng, and W. Hang, “GHG emissions from primary aluminum production in China: Regional disparity and policy implications,” Appl Energy, vol. 166, no. 800, pp. 264–272, 2016, doi: 10.1016/j.apenergy.2015.05.056.

[9] G. Leonzio, P. U. Foscolo, E. Zondervan, and I. D. L. Bogle, “Scenario Analysis of Carbon Capture, Utilization (Particularly Producing Methane and Methanol), and Storage (CCUS) Systems,” Ind Eng Chem Res, vol. 59, no. 15, pp. 6961–6976, Apr. 2020, doi: 10.1021/acs.iecr.9b05428.

[10] K. Kashefi, A. Pardakhti, M. Shafiepour, and A. Hemmati, “Process optimization for integrated mineralization of carbon dioxide and metal recovery of red mud,” J Environ Chem Eng, vol. 8, no. 2, Apr. 2020, doi: 10.1016/j.jece.2019.103638.

[11] F. Abdul, A. Iizuka, H. J. Ho, K. Adachi, and E. Shibata, “Potential of major by-products from non-ferrous metal industries for CO2 emission reduction by mineral carbonation: a review,” Jul. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s11356-023-27898-y.

[12] D. Bonenfant et al., “CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature,” Ind Eng Chem Res, vol. 47, no. 20, pp. 7617–7622, Oct. 2008, doi: 10.1021/ie7017228.

[13] V. S. Yadav, M. Prasad, J. Khan, S. S. Amritphale, M. Singh, and C. B. Raju, “Sequestration of carbon dioxide (CO2) using red mud,” J Hazard Mater, vol. 176, no. 1–3, pp. 1044–1050, Apr. 2010, doi: 10.1016/j.jhazmat.2009.11.146.

[14] L. J. Kirwan, A. Hartshorn, J. B. McMonagle, L. Fleming, and D. Funnell, “Chemistry of bauxite residue neutralisation and aspects to implementation,” Int J Miner Process, vol. 119, pp. 40–50, 2013, doi: 10.1016/j.minpro.2013.01.001.

[15] Y. S. Han, S. Ji, P. K. Lee, and C. Oh, “Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2,” J Hazard Mater, vol. 326, pp. 87–93, Mar. 2017, doi: 10.1016/j.jhazmat.2016.12.020.

[16] J. Yang et al., “Rapid wet grinding carbonation of sintering red mud for highly efficient CO2 sequestration and Cr solidification,” Chemical Engineering Journal, vol. 488, May 2024, doi: 10.1016/j.cej.2024.151134.

[17] A. J. Sipayung, D. T. Suryaningtyas, and B. Sumawinata, “Electrokinetic of red mud,” IOP Conf Ser Earth Environ Sci, vol. 393, no. 1, 2019, doi: 10.1088/1755-1315/393/1/012090.

[18] Rossalina W, Zaharah T. A, and Silalahi I. H, “Komposisi Unsur dan Karakterisasi Mineral Magnetik dalam Red Mud, Residu Bauksit di PT Indonesia Chemical Alumina (ICA) Kalimantan Barat,” Indonesian Journal of Pure and Applied Chemistry, vol. 4, no. 3, pp. 139–144, 2021, [Online]. Available: https://jurnal.untan.ac.id/index.php/IJoPAC/article/view/49660/pdf

[19] B. Dwi Meilani et al., “Indonesian Journal of Chemical Science Synthesis of Red Mud-Based SiO 2 with Various NaOH Concentration and Extraction Times,” J. Chem. Sci, vol. 12, no. 3, 2023, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ijcs

[20] S. K. Rout, T. Sahoo, and S. K. Das, “Design of tailing dam using red mud,” Central European Journal of Engineering, vol. 3, no. 2, pp. 316–328, 2013, doi: 10.2478/s13531-012-0056-7.

[21] X. fei LI et al., “Leaching optimization and dissolution behavior of alkaline anions in bauxite residue,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 28, no. 6, pp. 1248–1255, Jun. 2018, doi: 10.1016/S1003-6326(18)64763-6.

[22] M. Yoo, S. J. Han, and J. H. Wee, “Carbon dioxide capture capacity of sodium hydroxide aqueous solution,” J Environ Manage, vol. 114, pp. 512–519, 2013, doi: 10.1016/j.jenvman.2012.10.061.

[23] C. Si, Y. Ma, and C. Lin, “Red mud as a carbon sink: Variability, affecting factors and environmental significance,” J Hazard Mater, vol. 244–245, pp. 54–59, 2013, doi: 10.1016/j.jhazmat.2012.11.024.

Downloads

Published

2025-05-31

How to Cite

Bauxite refinery residue neutralization using active wet carbonation technique. (2025). BIS Energy and Engineering, 2, V225005. https://doi.org/10.31603/biseeng.344

Similar Articles

1-10 of 68

You may also start an advanced similarity search for this article.